Uniformly Accurate Discontinuous Galerkin Fast Sweeping Methods for Eikonal Equations

نویسندگان

  • Yong-Tao Zhang
  • Shanqin Chen
  • Fengyan Li
  • Hongkai Zhao
  • Chi-Wang Shu
چکیده

In [F. Li, C.-W. Shu, Y.-T. Zhang, H. Zhao, Journal of Computational Physics 227 (2008) 81918208], we developed a fast sweeping method based on a hybrid local solver which is a combination of a discontinuous Galerkin (DG) finite element solver and a first order finite difference solver for Eikonal equations. The method has second order accuracy in the L norm and a very fast convergence speed, but only first order accuracy in the L norm for the general cases. This is an obstacle to the design of higher order DG fast sweeping methods. In this paper, we overcome this problem by developing uniformly accurate DG fast sweeping methods for solving Eikonal equations. We design novel causality indicators which guide the information flow directions for the DG local solver. The values of these indicators are initially provided by the first order finite difference fast sweeping method, and they are updated during iterations along with the solution. We observe both a uniform second order accuracy in the L norm (in smooth regions) and the fast convergence speed (linear computational complexity) in the numerical examples.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A uniformly second order fast sweeping method for eikonal equations

A uniformly second order method with a local solver based on the piecewise linear discontinuous Galerkin formulation is introduced to solve the eikonal equation with Dirichlet boundary conditions. The method utilizes an interesting phenomenon, referred as the superconvergence phenomenon, that the numerical solution of monotone upwind schemes for the eikonal equation is first order accurate on b...

متن کامل

A second order discontinuous Galerkin fast sweeping method for Eikonal equations

In this paper, we construct a second order fast sweeping method with a discontinuous Galerkin (DG) local solver for computing viscosity solutions of a class of static Hamilton-Jacobi equations, namely the Eikonal equations. Our piecewise linear DG local solver is built on a DG method developed recently [Y. Cheng and C.-W. Shu, A discontinuous Galerkin finite element method for directly solving ...

متن کامل

A Third Order Fast Sweeping Method with Linear Computational Complexity for Eikonal Equations

Fast sweeping methods are a class of efficient iterative methods for solving steady state hyperbolic PDEs. They utilize the Gauss-Seidel iterations and alternating sweeping strategy to cover a family of characteristics of the hyperbolic PDEs in a certain direction simultaneously in each sweeping order. The first order fast sweeping method for solving Eikonal equations (Zhao in Math Comput 74:60...

متن کامل

High-Order Factorization Based High-Order Hybrid Fast Sweeping Methods for Point-Source Eikonal Equations

The solution for the eikonal equation with a point-source condition has an upwind singularity at the source point as the eikonal solution behaves like a distance function at and near the source. As such, the eikonal function is not differentiable at the source so that all formally high-order numerical schemes for the eikonal equation yield first-order convergence and relatively large errors. Th...

متن کامل

Fast sweeping method for the factored eikonal equation

We develop a fast sweeping method for the factored eikonal equation. By decomposing the solution of a general eikonal equation as the product of two factors: the first factor is the solution to a simple eikonal equation (such as distance) or a previously computed solution to an approximate eikonal equation. The second factor is a necessary modification/correction. Appropriate discretization and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 33  شماره 

صفحات  -

تاریخ انتشار 2011